Stability and Numerical Analysis of the Hébraud-Lequeux Model for Suspensions

نویسندگان

  • Ángel Giménez
  • Francisco Morillas
  • José Valero
  • José Marı́a Amigó
چکیده

We study both analytically and numerically the stability of the solutions of the Hébraud-Lequeux equation. This parabolic equation models the evolution for the probability of finding a stress σ in a mesoscopic block of a concentrated suspension, a non-Newtonian fluid. We prove a new result concerning the stability of the fixed points of the equation, and pose some conjectures about stability, based on numerical evidence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vibration of Road Vehicles with Non linear Suspensions

In order to investigate the effects of non-linear springs in vibrating behavior of vehicles, the independent suspension of conventional vehicles could be modeled as a non-linear single degree of freedom system. The equation of motion for the system would be a non-linear third order ordinary differential equation, when considering the elasticity of rubber bushings in joints of shock absorber. It...

متن کامل

Nonlinear Large Deformation Analysis of Rubber Bumpers in Automotive Suspensions

In this article, rubber bumpers of Double - Wishbone suspension system have been modeled and analyzed. The objective of the present work is to predict the performance of these products during deformation, represent an optimum method to design, obtain stiffness characteristic curves and utilize the results in the automotive suspension dynamic analysis. These parts are nonlinear and exhibit large...

متن کامل

Stability Analysis of a Fractional Order Model of HIV virus and AIDS Infection in the Community

In  this  paper a  non-linear  model  with  fractional  order  is  presented  for  analyzing  and  controlling the  spread  of  HIV virus.  Both  the  disease-free  equilibrium and the endemic equilibrium are  found  and  their  stability is  discussed. The basic reproduction number , which is a function of the constant parameters in the model, plays an essential  role in the stability of  the ...

متن کامل

Soil and Rock Slope Stability Analysis based on Numerical Manifold Method and Graph Theory

Limit equilibrium method, strength reduction method and Finite Difference Methods are the most prevalently used methods for soil and rock slope stability analysis. However, it can be mention that those have some limitations in practical application. In the Limit equilibrium method, the constitutive model cannot be considered and many assumptions are needed between slices of soil and rock. The s...

متن کامل

Stability and Numerical Analysis of Malaria- mTB- HIV/AIDS Co-infection (TECHNICAL NOTE)

In this paper, we develop a mathematical model to examine the transmission dynamics of curable malaria, curable mTB and non-curable HIV/AIDS and their co-infection. The size of population has been taken as varying due to the emigration of susceptible population. The total population is divided into five subclasses as susceptible, malaria infected, mTB infected, HIV infection and AIDS by assumin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014